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The canonical formalism for a self-dual Maxwell field on a null plane is reviewed. After 
solution of the second class constraints, the transition to the quantum theory is carried out 
using a representation in which the self-dual Maxwell field is diagonal. The Gauss law con- 
straint allows us to consider the physical state vectors to be holomorphic functionals of one 
complex function. Application of reality conditions allows us to define an inner product such 
that the Hermitean adjoint operators are identified with the classical complex conjugate oper- 
ators. In going over to the Fourier expansion of the operators, we find that the inner product is 
formally convergent for positive frequency functionals and formally divergent for the negative 
frequency functionals. Following similar results ofAshtekar, Rovelli, and Smolin, negative fre- 
quency states are functional distributions identified with the helicity opposite to that of the 
positive frequency states. 
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1. Introduction 

A major  p rogram is underway to construct  a quan tum theory of  gravity using 
the new variables in t roduced by Ashtekar  [ 1-4 ]. While s tudying how to make  
use of  these new variables in the full non-l inear  theory,  appl icat ion has been made  
both to the e lectromagnet ic  field [ 5 ] and to l inearized general relativity [6] .  A 
quan tum theory, however ,  requires a comple te  set o f  independent  variables f rom 
which one can construct  the observables  of  the theory. It  is well known that  the 
identification o f  such quanti t ies  is mos t  easily carried out on a null surface. For  
example,  in the work of  Bondi [7] and Sachs [8 ], one specifies the conformal  
two-geometry on space-like cuts o f  the outgoing null cone and at null infinity one 
gives in format ion  about  the outgoing radia t ion together  with a specification of  
the mass aspect  and dipole aspect  at one t ime.  The  latter contain in format ion  
about the sources of  the gravi ta t ional  field whereas the fo rmer  contain informa-  
tion about  the independent  degrees of  f reedom of  the gravi ta t ional  field. A simi- 
lar analysis holds in the N e w m a n - P e n r o s e  fo rmal i sm [ 9,10 ]. 

For this reason, there have been a t tempts  in the past  to develop a canonical  
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formalism for general relativity on a null surface. Torre [ 1 1 ] based his analysis 
on tetrads adapted to the two-by-two formalism of d'Inverno and Stachel [ 12 ]. 
An alternative approach based on the work of Bondi and Sachs was used by the 
present author [ 13 ]. In both cases only the classical theory was investigated. The 
results were of such complexity that no further progress toward a quantum theory 
was undertaken. 

Based on the ideas of the Ashtekar variables, a new attempt to study the canon- 
ical formalism for general relativity on a null cone has begun [ 14,15 ]. However, 
in order to gain some familiarity with the use of self-dual variables, a preliminary 
study of the electromagneti~c field has also been undertaken [16,17]. The pre- 
vious studies are only of the classical field theory. Here I wish to present some 
results with respect to quantization. As in ref. [ 16 ], the electromagnetic field is 
considered on a null plane in Minkowski space. The vector potential, U ( 1 ) con- 
nection, is considered to be a real field, but only the self-dual components of the 
electromagnetic field appear in the Lagrangian. Because we are using a null sur- 
face as the base manifold on which to define the canonical formalism, second 
class constraints occur. These second class constraints are eliminated prior to 
passage to the quantum theory. The transition to the quantum theory is carried 
out in a representation in which the self-dual Maxwell field is diagonal, yet the 
two modes of polarization occur explicitly. The program carried out here is re- 
lated to that in the paper "Self duality and quantization" by Ashtekar, Rovelli, 
and Smolin (henceforth referred to as ARS), which appears in this volume. 

In the following section, previous work [ 16 ] is reviewed and extended. Then 
in section 3, the quantum theory is formulated. Only the free field is considered. 
A brief discussion of conclusions is in section 4. 

2. Classical formalism 

Following ref. [ 16 ], we introduce the coordinates 

(u, v, ~, ( ) =  ( ( t - z ) ,  ½(t+z), (x+iy)/x/~, (x-iy)/x//-2), 
which are adapted to the null plane u = constant. In these coordinates, the natural 
basis forms a null tetrad all of whose connection coefficients vanish and the Min- 
kowski space metric has the components ~/o~ = -rh3 = 1. Thus, we need not distin- 
guish between coordinate and tetrad indices. (Lower case Greek indices will have 
the range 0-3 while lower case Latin indices will have the range 1-3. ) 

K;'*Pa--I~pamxK" E 0123~ - i .  Duality of the Maxwell field is defined by ~ - 2~ - ,~, ~o123 = 
Thus, we can introduce the self-dual two form i f=½ ( F - i F * )  so that .~-*=i~'. 
Since there are only three independent self-dual components, we use the notation 

o@-01 = , ~ 2 3  .~,~:t , ,~-03 .:o~3, ~-21 =:B.  (2.1) 
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Below, upper case Latin indices will take the values 1 and 3. 
The first order action can be expressed in terms of the self-dual Maxwell field 

and the real connection (vector potential) as [3 ] 

1 
~ - ~ o ~ ^ , ~ 1 ,  (2.2) IdA^ 

which takes the expanded form 

S= f du I d3x{A,4~A+Ao~A4 

+~m(2Ata .z l - -~ l )+B( .~3+2At l .21 )}  . (2.3) 

In the above we have used du d3x=i  du ^ d r ^  d r ^  d~. The configuration space 
for this action is defined by the six variables (AA, ~A, A2 ' B ) .  TO go over to the 
Hamiltonian, we note that ~A is conjugate to AA while the momenta conjugate to 
the remaining variables A2 and B are zero, thus giving us primary constraints: 

/ 7 = 0 ,  x = 0 .  (2.4) 

In addition, Ao behaves like a Lagrangian multiplier whose variation gives an 
additional constraint. 

The Hamiltonian now has the form 

H= ; d3x{~l(2A[2.31d-~l)q-B(2A[2,tl--~3)-Ao,~Aaq-a/Tq-flTr}. (2.5) 

Propagation of the primary constraints and variation of the Lagrange multiplier 
Ao lead to the secondary constraints 

{/7(x), H} =X "= ~ 3+B ~ = 0 ,  (2.6a) 

{Tt(x), H} = ¢:= - -  ,~3q-A2.1 -A~,2 = 0 ,  (2.6b) 

f#' (x ) .=  ,~A .~=0. (2.6c) 

With the addition of a term in/7, (2.6c) has a vanishing Poisson bracket with the 
other four constraints and thus is first class, 

~ : =  O~A 4 31-/~,2 , (2.7) 

while the remaining four constraints are second class. Their Poisson brackets with 
each other do not vanish. 

According to Dirac [ 18,19 ] second class constraints should be eliminated be- 
fore quantization of the field. That is because they generate transformations which 
lead out of the space of  solutions and should not become operators on the physi- 
cal states. This elimination can be either through direct solution of the con- 
straints themselves or by use of the Dirac bracket formalism [ 19,20 ]. In the pres- 
ent example, the direct solution is possible and therefore preferable. Equation 
(2.6a) can be solved forB and eq. (2.6b) for Az: 
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B=Bo(~, ~) J ~ '  - -  ~" ,3 dr' , (2.8a) 
- - o o  

Az=A°z+ i (Al'z+~3)dv'' (2.8b) 
- - 0 : 3  

These equations together with the primary constraints, eq. (2.4), eliminate four 
of the phase space variables. We are then left with AA, ~A, and the Gauss law first 
class constraint. Since each first class constraint permits the imposition of two 
restrictions on the phase space, there are two free complex functions remaining. 
The reality conditions will reduce these to two real functions. 

While AA and ~A continue to satisfy the standard Poisson bracket relations, 

{A~ (x), ~B(x'  )}=SA B(X--X'), (2.9) 

A 2 and B how have the following relations: 

{Az(x),~'(x')}=S(v-v')Sz(~-~')5(~-~') , (2.10a) 

{Az(x),A3(x' )}=S(v-v' )5(if-if' ) 5 ( ( - ( '  ) ,  (2.10b) 

{B(x),A,(x')}=S(v-v')5(~-~')Sg(~-~') . (2.10c) 

S(v) is the unit step function, S(v) = 1 for v>0, and S(v) =0 for v<0. 
The reality of the connection implies that A3 =A2. Thus 

A3=A°2+ i ( A l ' 3 + ~ 3 ) d v ' '  (2.11) 
- - O O  

Equations (2.8)-(2.11 ) lead to the Poisson bracket relations 

{~3(x),  ~3(x')}=5,v(v-v')5(~-~')5((-( ') ,  (2.12a) 

{~3(x) ,~ ' (x ' )}=-5(v-v ' )5(~-~')5((~-~')  , (2.12b) 

{~ l (x ) ,  ~'(x ')}=S(v-v')5z(~-~')5((~-~') .  (2.12c) 

The last of these relations follows from consistency with the Gauss law constraint. 
Note that, although we started from a complex Lagrangian which contained only 
components of the self-dual Maxwell field, use of the reality conditions intro- 
duces the anti-self-dual components. 

By making use of the Gauss law constraint, the Hamiltonian can be written in 
the suggestive form 

H =  J d3x { ~ ' ~ ' - - A ~ A ~ } .  (2.13) 
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Except for the contribution from the divergence term, the Hamiltonian is posi- 
tive definite. In the source free case that we are considering, the divergence van- 
ishes. Using the bracket expressions in eqs. (2.12), this Hamiltonian gives the 
correct equations of motion for AI, ~1, and ~3. A, of course, fixes the value of 
Ao, which is completely arbitrary. The remaining variables are all determined 
from these. 

3. Quantization 

In the passage to the quantum theory we shall follow the program discussed in 
ref. [ 4 ]. This program is outlined in the ARS article included in this volume. The 
one difference in the application of the program to the present situation is that 
we have second class as well as first class constraints. According to Dirac [ 18,19 ], 
the second class constraints are not to be carried over to the quantum theory 
because they do not generate invariant transformations. That is, second class con- 
straints do not map solutions onto solutions. Therefore, AA and ~A are the basic 
variables whose algebra we wish to carry over to the quantum theory. These vari- 
ables become the basic operators AA and ~-A. On the other hand, A2 (B will not 
be of interest) is defined in terms of the basic operators from eqs. (2.8b), 

2 2 =  i d v ( 4 " 2 + ~ 3 ) "  (3.1) 
--oo 

For the construction of the star algebra, the adjoints of these operators are de- 
fined by their complex conjugate relations on the classical phase space. In partic- 
ular, we find that 

~ I'[" := ~ 1 --43,2 "1-42,3 ~ 3"1" :=43.1--41,3 , (3.2a,b) 

4~-'=A, , 4 ;  :=4z.  (3.2c,d) 

The star algebra for the basic operators and their adjoints is equal to ih times 
the Poisson brackets for the basic variables and their conjugates given in the pre- 
vious section. Thus, 

[A~ (x), ~'~(x' ) ] 

[~3+(x), ~3(x' ) ] 

[~3+(x), ~ ( x ' ) ]  

[ o~3 (X) ,  ,.~ l* (X ' )  ] 

[ ~ ' t ( x ) ,  o~'(X') ] 

= i h c 5 3 ( x - x  ' ) , (3.3a) 

= i h ~ . ( v - v '  ) J ( £ - ~ '  ) ~ ( ( - ~ '  ) ,  (3.3b) 

= - i h c ~ ( v - v '  ) ~ ( ( - ( '  ) ~ .c((-  ~ ) ,  (3.3c) 

= i h c S ( v - v ' ) c ~ c ( ( - ( ' ) c ~ ( ( - ~ ' )  , (3.3d) 

= i h S ( v - v '  )c~,¢(~-(' )~,C((-( '  ) • (3.3e) 
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The adjoint operators are understood to be the expressions given in eqs. (3.2). 
We shall assume that the operators ~A are diagonal so that 

5 ~,A ~[ ~..,] = ffA 5U[ ~.~ ] ,  A., 5u[ ~'~ ] = ih ~ 7J[ ~A ] .  ( 3.4 ) 

The physical states are those which are annihilated by the first class constraint, 
the Gauss law constraint: 

~A.,  ~ [  ~ A  ] = f t . . ,  ~J[ ~ A ]  = 0 .  (3.5)  

This implies that the quantities in the argument of the physical state vector sat- 
isfy the Gauss law constraint. Therefore, the physical states may be considered to 
be functionals of ~3 only and the action of ~ to be derived from that of .~3. 
Thus, 

~ 3  =F3t/J[  ~ 3  ] (3.6a) 

implies that 

where 

~ 1  ~tT./[~3]_~_~ - ~ _ ( ~ ) 3 ~ / [ ~ 3 ]  , (3.6b) 

~ 3 ( x ) =  J dv' ~ 3 ( v ' , ( , O .  (3.6c) 

AS a result, only gauge invariant operators can act on the physical states. Thus, 
A~ and A3 can act only in the gauge invariant form which defines ~,3t. From the 
commutat ion relations in (3.3b) it follows that 

0 5 ~ [ ~ 3 ] .  (3.7) ~.  3t ~./[ ~ 3 ] = ih 0v ~5~ ~ - 3  

The inner product on the space of physical states is determined by the require- 
ment that the adjoint operators be, in fact, the Hermitean adjoint operators. Thus, 

( y-, ~3  (x) ~) = ( ~, ~ ,3 ,~  ) .  (3.8) 

More explicitly, this becomes 

f d I ~  3 A ~ [ff3] u[,~3, ~ 3  ] c~3~-/[,,~3 ] d I ~  3 

= f dI~3 A dI~3 fl [ ~3 ,  ~ 3  ] ~(r/[ ~ 3  ] ~3t~" [ ~ 3  ] • (3.9) 

Using eq. (3.6a) on the left hand side and (3.7) on the right, we find that the 
measure on the physical states,/~ [ ~3, ~ 3  ], satisfies the following condition: 



J.N. Goldberg / Quantized self-dual Maxwell field 169 

0 8 
ih 0v 8ff3(x------- ~ / z [ :  3, ~3 ]  =,~3]./[ if3, ~ 3 ]  . (3.10) 

The solution of this equation is 

( i j  ) 
/1[~3, ~3 ]  = e x p - - ~ - ~  d 3 X { ~ 3 ( X ) , ~ 3 ( X ) - - , ~ 3 ( X ) ~ 3 ( X ) } ,  (3.11) 

where ~ 3 ( x )  is defined in eq. (3.6c). 
Since we are now free to make use of the reality conditions, the Hamiltonian 

now takes the form of eq. (2.13 ), 

H =  f d3x ~ 1 ~  It , (3.12) 

where the operators are understood to be expressed in terms of ~ 3  and if3+. The 
action o f ~  ~ is given in eq. (3.6) and 

0 8 
~ l t = ~ l  + 2  z~[2.31 = - i h  0-~ 8 - ~  " (3.13) 

To understand this Hamiltonian better, we shall carry out a Fourier expansion 
of the operators. Thus 

( l ' ~  3/2 
~ 3 ( x )  = \2--~ / i d3kf3(k)e'k"-" (3.14) 

- - O O  

Equation (3.3b) then gives us the only commutator  we shall need: 

[f 3t(k) , f  3(k' ) ] =-hk ,  c~3(k-k ' )  . (3.15) 

The transformed Hamiltonian has the form 

3k ~ f 3 ( k ) f 3 ' ( k )  . (3.16) H = f d  k7 

Since ~3 satisfies the wave equation in terms of the coordinates u, v, ~ we have 
the condition on the frequency, wk~ + k2k3 = 0. Being the product of complex con- 
jugates, kEk3 is positive. Therefore, positive frequency is associated with negative 
k~. Therefore, we define creation and annihilation operators as follows [21 ]: 

1 a t ( k ) =  ~ f 3 ( - k ) ,  

l f3 t (k)  ' b t ( k ) -  

1 a ( k ) -  . ./-~--7..f3*(-k), k , < O ,  
, / n l~ ,  l 

l 3 b(k)_ (k), 

Then, with normal ordering, the Hamiltonian takes the form 

k l > 0 .  (3.17) 
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o o  

H= I dk, I ~ dk2dk3hta[at(k)a(k)+bt(k)b(k) ]" (3.18) 
0 

with og=k2k3/kt. It is clear that a t (k )  and a(k) create and annihilate right handed 
photons while b t (k )  and b(k) create and annihilate left handed photons. Thus, 
although we started only with the self-dual field, the reality conditions and the 
use of both positive and negative frequencies allow us to describe both polariza- 
tion states of the electromagnetic field. 

However, the measure takes the form 

/t[f 3,f 3] =exP(h i ? f 3 ( k ) f 3 ( k ) ) ,  (3.19) 
- - o o  

which is convergent for positive frequencies and divergent for negative frequen- 
cies. In ARS, the same result occurs for fields defined on space-like surfaces. There 
they conclude that the negative frequencies are associated with state vectors which 
are distributions in the self-dual representation. Furthermore, they shows that in 
an anti-self-dual representation, the roles of the distributional and polynomial 
states would be reversed. This is in keeping with the interpretation above that the 
positive frequencies should be associated with one helicity and the negative fre- 
quencies with the other. 

4. Conclusion 

In the classical theory, the real source-free Maxwell field requires the specifi- 
cation of four real functions on a space-like Cauchy surface to determine the 
unique propagation of the field. That is, one gives four pieces of data per space 
point. This results, as is well known, in two states of polarization or helicity. On 
a null surface, on the other hand, only two pieces of data per hypersurface point 
- two functions - need be specified to describe the propagation of the field 
[22,23 ]. The difference results from the need to provide two additional functions 
on a surface at null infinity to have unique propagation. While we have been 
careful about boundary conditions in the classical description, in the present work 
we have not considered the quantization of the degrees of  freedom at null infin- 
ity. This means that we are not considering the quantization of fields which may 
be parallel to the initial surface. Nonetheless, we obtain the propagation of two 
helicity states, which represents the two degrees of freedom of the electromag- 
netic field. 

Had we used a future directed null cone rather than a null plane, there would 
have been no need for additional functions at null infinity for a discussion of the 
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future propagation of the field. However, propagation into the past would require 
additional information. In this case, the additional information would represent 
the outgoing radiation. Therefore, a complete treatment of the quantized Max- 
well field based on a null surface description needs to consider the quantization 
of fields at null infinity. Since with this paper we are trying to understand some 
of the difficulties to be faced in quantization of the gravitational field, this prob- 
lem will have to be addressed. 

In the case of the gravitational field, a representation in terms of the holonomy 
around arbitrary loops is being studied [ 24 ]. In fact, this representation has been 
worked out in considerable detail for the linearized theory [6 ] as well as for the 
Maxwell field on a space-like surface [ 5 ]. One can treat the holonomy on a null 
surface as well. This has been done for the example studied here. However, the 
resulting T-algebra is much more complicated because of causal connections along 
the null rays. The complications are such that a simple application of the loop 
representation does not look promising on the null surface. 

There are other possible ways of looking for a suitable representation. One is 
through the work of Kozameh and Newman [25]. Another, which has been 
around for some time, but has not been applied in this connection, is the use of 
twistor theory through the Penrose transform [26 ]. Since the transform defines 
self-dual fields, it may be easier to apply on a null surface than the loop 
representation. 

This work has benefited from my discussions with Chrys Soteriou and David 
Robinson about using a self-dual connection to describe canonical general rela- 
tivity on a null surface. For the quantum discussion I am indebted to Abhay 
Ashtekar, who let me see the ARS manuscript before it was submitted and who 
helped to clarify some of the problems I found. Finally, it is a pleasure to submit 
this paper in honor of Roger Penrose. He has taught us so much about the behav- 
ior of massless fields that this work owes him a great deal. 

This research was supported in part by the National Science Foundation through 
grant number PHY 9005790. 
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